電纜故障從型式上可分為串聯(lián)與并聯(lián)故障。串聯(lián)故障指電纜一個或多個導(dǎo)體(包括鉛、鋁外皮)斷開;通常在電纜至少一個導(dǎo)體斷路之前,串聯(lián)故障是不容易發(fā)現(xiàn)的。并聯(lián)故障是導(dǎo)體對外皮或?qū)w之間的絕緣下降,不能承受正常運(yùn)行電壓。實(shí)際的故障型式組合是很多的,圖1給出了可能性較大的幾種故障形式。例如:圖1.c所示,導(dǎo)體斷路往往是
電纜故障電流過大而燒斷的,這種故障一般伴有并聯(lián)接地或相間絕緣下降的情況。實(shí)際發(fā)生的故障絕大部分是單相對地絕緣下降故障。(不同的電纜故障測試儀器廠家,對故障的分類有所區(qū)別)。
圖1 幾種電纜故障形式
電纜故障點(diǎn)可用圖2所示電路來等效。Rf代表絕緣電阻,G是擊穿電壓為Vg的擊穿間隙,Cf代表局部分布電容,上述三個數(shù)值隨不同的故障情況變化很大,并且互相之間并沒有必然的聯(lián)系。
圖2 電纜故障等效電路
間隙擊穿電壓Vg的大小取決于放電通道的距離,電阻Rf的大小取決于電纜介質(zhì)的碳化程度,而電容Cf的大小取決于故障點(diǎn)受潮的程度,數(shù)值很小,一般可以忽略。
根據(jù)故障電阻與擊穿間隙情況,電纜故障可分為開路、低阻、高阻與閃絡(luò)性故障,如表1所示。
表1 電纜故障性質(zhì)的分類
說明:表中Z0為電纜的波阻抗值,電力電纜波阻抗一般在10-40Ω之間。
以上分類的目的也是為了選擇測試方法的方便,根據(jù)目前流行的故障測距技術(shù),開路與低阻故障可用低壓脈沖反射法,高阻故障要用沖擊閃絡(luò)法測試,而閃絡(luò)性故障可用直流閃絡(luò)法測試?,F(xiàn)場人員有把Rf<100KΩ的故障稱為低阻故障的習(xí)慣,主要是因?yàn)閭鹘y(tǒng)的
電橋法可以測量這類故障。智能型電纜故障閃測儀,Rf<1KΩ以下的故障,也就是用萬用表能夠直接測量出來絕緣電阻的故障,才可以稱為低阻故障。高壓搖表測試電阻為零,可能還是高阻故障。
據(jù)統(tǒng)計(jì),高阻及閃絡(luò)性故障約占整個電纜故障總數(shù)的90%以上?,F(xiàn)場是通過試驗(yàn)方法區(qū)分高阻與閃絡(luò)性故障的。
圖3給出了電纜耐壓試驗(yàn)等效電路,其中Rs為試驗(yàn)設(shè)備內(nèi)阻,E為設(shè)備所能提供的直流電壓值,電阻Rf與臨界擊穿電壓為Vg的間隙并聯(lián)代表故障點(diǎn)。
圖3 電纜耐壓試驗(yàn)等效電路
對閃絡(luò)性故障來說Rf較大,故障間隙兩端電壓可以增加至很高,當(dāng)試驗(yàn)電壓升至某一值時,故障點(diǎn)擊穿放電,電流突然升高,電壓突然下降。預(yù)防性試驗(yàn)中發(fā)生的故障多屬閃絡(luò)性故障。
高阻故障的故障點(diǎn)電阻Rf較?。ǖ笥?0Z0,電纜特性阻抗的10倍),導(dǎo)致故障點(diǎn)兩端所加電壓不能升至高于故障點(diǎn)擊穿電壓,也就不能使故障點(diǎn)擊穿。因此,可以從在對電纜進(jìn)行高壓絕緣試驗(yàn)時有無故障點(diǎn)擊穿現(xiàn)象判斷電纜存在高阻還是閃絡(luò)性故障。顯然,高阻與閃絡(luò)性故障的區(qū)分不是絕對的,它與高壓試驗(yàn)設(shè)備的容量或試驗(yàn)設(shè)備的內(nèi)阻等因素有關(guān)。
實(shí)際上還存在一種封閉性故障,它多發(fā)生于電纜接頭或終端頭內(nèi),特別是多發(fā)生在浸油的電纜頭內(nèi)。發(fā)生這類故障時,有時在某一試驗(yàn)電壓下絕緣擊穿,待絕緣恢復(fù),擊穿現(xiàn)象便完全消失,這類故障稱為封閉性故障,因故障不能再現(xiàn),尋找起來就比較困難。
電纜故障的探測一般要經(jīng)過診斷、測距、定點(diǎn)三個步驟。
電纜故障性質(zhì)的診斷,即確定故障的類型與嚴(yán)重程度,以便于測試人員對癥下藥,選擇適當(dāng)?shù)碾娎|故障測距與定點(diǎn)方法。
電纜故障測距,又叫粗測,在電纜的一端使用儀器確定故障距離,測試現(xiàn)場常用的
故障測距方法有:古典電橋法(高壓電橋、低壓電橋)與現(xiàn)代行波法(脈沖法:低壓脈沖法,高壓脈沖法)。
電纜故障定點(diǎn),又叫精測,即按照故障測距結(jié)果,根據(jù)電纜的路徑走向,找出故障點(diǎn)的大體方位來,在一個很小的范圍內(nèi),利用放電聲測法或其它方法確定故障點(diǎn)的準(zhǔn)確位置。
一般來說,成功的
電纜故障探測都要經(jīng)過以上三個步驟,否則欲速則不達(dá)。例如不進(jìn)行故障測距而利用放電聲測法直接定點(diǎn),沿著很長的電纜路徑(可能有數(shù)公里長),探測故障點(diǎn)放電聲是相當(dāng)困難的。如果已知電纜故障距離,確定出一個大體方位來,在很小的一個范圍內(nèi)(10米左右)來回移動定點(diǎn)儀器探測
電纜故障點(diǎn)放電聲,就容易多了。
所謂診斷電纜故障的性質(zhì),就是指確定:故障電阻是高阻還是低阻;是閃絡(luò)還是封閉性故障;是接地、短路、斷線,還是它們的混合;是單相、兩相,還是三相故障。
可以根據(jù)故障發(fā)生時出現(xiàn)的現(xiàn)象,初步判斷故障的性質(zhì)。例如,運(yùn)行中的電纜發(fā)生故障時,若只是給了接地信號,則有可能是單相接地的故障。繼電保護(hù)過流繼電器動作,出現(xiàn)跳閘現(xiàn)象,則此時可能發(fā)生了電纜兩相或三相短路或接地故障,或者是發(fā)生了短路與接地混合故障。發(fā)生這些故障時,短路或接地電流燒斷電纜將形成斷線故障。但通過上述判斷不能完全將故障的性質(zhì)確定下來,還必須測量絕緣電阻和進(jìn)行“導(dǎo)通試驗(yàn)”。
測量絕緣電阻時,使用兆歐表(1千伏以下的電纜,用1000伏的兆歐表;1千伏以上的電纜,用2500伏的兆歐表)來測量電纜線芯之間和線芯對地的絕緣電阻;進(jìn)行“導(dǎo)通試驗(yàn)”時,將電纜的末端三相短接,用萬用表在電纜的首端測量芯線之間的電阻?,F(xiàn)將一故障電纜的測量結(jié)果列于表2中,供參考。
根據(jù)表2所列絕緣電阻之測量結(jié)果,可以分析出此故障是兩相接地;根據(jù)“導(dǎo)通試驗(yàn)”結(jié)果,以確定三相電纜未發(fā)生斷線。此故障點(diǎn)的狀態(tài),如圖4所示。
表2 絕緣電阻的測量與“導(dǎo)通試驗(yàn)”
圖4 電纜線路故障狀態(tài)圖
由于兆歐表分辨率比較差,當(dāng)指示為零時,不能以為故障電阻就是零歐姆,要用萬用表測量故障電阻的精確值,以確定故障是否是屬于低阻的。可通過耐壓試驗(yàn)確定高阻與閃絡(luò)性故障,弄清故障點(diǎn)的擊穿電壓。
六、不同的電纜故障探測方法的簡介
長期以來,涌現(xiàn)出了許多測量方法與儀器,這些方法與儀器適用于不同故障情況,各有優(yōu)缺點(diǎn),這里就故障測距與定點(diǎn)儀器簡單地做一下評價和比較。
1.故障測距
(1)、電橋法
電橋法是一種最為經(jīng)典測試電纜故障測距方法。如圖5所示:
圖5 電橋測距原理
電橋法測試線路的連接如圖5a所示,將被測電纜終端故障相與非故障相短接,電橋兩臂分別接故障相與非故障相,圖5b給出了等效電路圖。仔細(xì)調(diào)節(jié)R2數(shù)值,總可以使電橋平衡,即CD間的電位差為0,無電流流過檢流計(jì),此時根據(jù)電橋平衡原理可得:
R3/R4=R1/R2 (1.1)
R1、R2為已知電阻,設(shè):R1/R2=K,則
R3/R4=K
由于電纜直流電阻與長度成正比,設(shè)電纜導(dǎo)體電阻率為R0,L全長代表電纜全長, LX 、、L0 分別為電纜故障點(diǎn)到測量端及末端的距離,則R2可用(L全長+L0)R0代替,根據(jù)式(1.1)可推出:
L全長+L0=KLX
而 L0=L全長-LX,所以
LX=2L全長/(K+1)
電纜斷路故障可用電容電橋測量,原理與上述電阻電橋類似。
電橋法優(yōu)點(diǎn)是簡單、方便、精確度高,但它的重要缺點(diǎn)是不適用于高阻與閃絡(luò)性故障,因?yàn)楣收想娮韬芨叩那闆r下,電橋里電流很小,一般靈敏度的儀表,很難探測,實(shí)際上電纜故障大部分屬于高阻與閃絡(luò)性故障。
在用電橋法測量故障距離之前,需用高壓設(shè)備將故障點(diǎn)燒穿,使其故障電阻值降到可以用電橋法進(jìn)行測量的范圍,而故障點(diǎn)燒穿是件十分困難的工作,往往要花費(fèi)數(shù)小時,甚至幾天的時間,十分不方便,有時會出現(xiàn)故障
點(diǎn)燒斷,故障電阻反而升高的現(xiàn)象,或是故障電阻燒得太低,呈永久短路,以至不能用放電聲測法進(jìn)行最后定點(diǎn)。電橋法的另一缺點(diǎn)是需要知道電纜的準(zhǔn)確長度等原始技術(shù)資料,當(dāng)一條電纜線路內(nèi)是由導(dǎo)體材料或截面不
同的電纜組成時,還要進(jìn)行換算,電橋法還不能測量三相短路或斷路故障。
現(xiàn)在現(xiàn)場上電橋法用的越來越少了,不過一些測試人員,尤其是老的測試人員,仍然習(xí)慣于使用該方法。特別是對一些特殊的故障沒有明顯的低壓脈沖反射,但又不容易用高壓擊穿,如故障電阻不是太高的話,使用電橋法往往可以解決問題。
(2)、低壓脈沖反射法
低壓脈沖反射法,又叫雷達(dá)法,是受二次世界大戰(zhàn)雷達(dá)的啟發(fā)而發(fā)明的,它通過觀察故障點(diǎn)反射脈沖與發(fā)射脈沖的時間差測距。
低壓脈沖反射法的優(yōu)點(diǎn)是簡單、直觀、不需要知道電纜的準(zhǔn)確長度等原始技術(shù)資料。根據(jù)脈沖反射波形還可以容易地識別電纜接頭與分支點(diǎn)的位置。
低壓脈沖反射法的缺點(diǎn)是仍不能適用于測量高阻與閃絡(luò)性故障。
(3) 高壓脈沖電壓法
高壓脈沖法,又稱閃測法,是六十年代發(fā)展起來的一種高阻與閃絡(luò)性故障測試方法?,F(xiàn)在國內(nèi)大多數(shù)企業(yè)生產(chǎn)、銷售該原理的電纜故障閃測儀。
首先使電纜故障閃測儀,在直流高壓或脈沖高壓信號的作用下?lián)舸┕收宵c(diǎn),然后,通過觀察放電電壓脈沖在測試點(diǎn)與故障點(diǎn)之間往返一次的時間測距。脈沖高壓法的一個重要優(yōu)點(diǎn)是不必將高阻與閃絡(luò)性故障燒穿,直接利用故障擊穿產(chǎn)生的瞬間脈沖信號,測試速度快,測量過程也得到簡化,是電纜故障測試技術(shù)的重大進(jìn)步。
高壓脈沖電壓法的缺點(diǎn)如下:
A.安全性差,儀器通過一電容電阻分壓器分壓測量電壓脈沖信號,儀器與高壓回路有電耦合,很容易發(fā)生高壓信號串入,造成儀器損壞。
B.在利用閃測法測距時,高壓電容對脈沖信號呈短路狀態(tài),需要串一電阻或電感以產(chǎn)生電壓信號,增加了接線的復(fù)雜性,且降低了電容放電時加在故障電纜上的電壓,使故障點(diǎn)不容易擊穿。
C.在故障放電時,特別是進(jìn)行沖閃測試時,分壓器耦合的電壓波形變化不尖銳,難以分辨。
(4)、高壓脈沖電流法
高壓脈沖電流法是八十年代初發(fā)展起來的一種測試方法,以安全、可靠、接線簡單等優(yōu)點(diǎn)顯示了強(qiáng)大的生命力。
高壓脈沖電流法與高壓脈沖電壓法的區(qū)別在于:前者通過一線性電流耦合器測量電纜故障擊穿時產(chǎn)生的電流脈沖信號,成功地實(shí)現(xiàn)了儀器與高壓回路的電耦合,省去了電容與電纜之間的串聯(lián)電阻與電感,簡化了接線,傳感器耦合出的脈沖電流波形亦比較容易分辨。
(5)、對測距方法與儀器選擇的建議
目前,普遍采用脈沖測距法。低阻與斷路故障采用低壓脈沖反射法,它比電橋法簡單直接;測量高阻與閃絡(luò)性故障采用高壓脈沖電流法;兩者都是通過脈沖信號在故障點(diǎn)與測量點(diǎn)之間往返一次時間測距,但前者是主動向
電纜發(fā)射探測電壓脈沖,后者是被動記錄故障擊穿產(chǎn)生的瞬間脈沖電流信號;信號的記錄與處理顯示可由同一個電路完成,故可方便地使儀器同時實(shí)現(xiàn)兩個功能。
2. 故障定點(diǎn)
電纜故障的精確定點(diǎn)是故障探測的關(guān)鍵。目前,比較常用的方法是沖擊放電聲測法及主要用于低阻故障定點(diǎn)的音頻感應(yīng)法。實(shí)際應(yīng)用中,往往因電纜故障點(diǎn)環(huán)境困素復(fù)雜,如振動噪聲過大、電纜埋設(shè)深度過深等,造成定點(diǎn)困難,成為快速找到故障點(diǎn)的主要矛盾。
聲磁同步檢測法,提高了抗振動噪聲干擾的能力;通過檢測接收到的磁聲信號的時間差,可以估計(jì)故障點(diǎn)距離探頭的位置;比較在電纜兩側(cè)接收
到脈沖磁場的初始極性,亦可以在進(jìn)行故障定點(diǎn)的同時尋找電纜路徑。
3. 新一代智能化電纜故障探測儀器
現(xiàn)代微電子技術(shù)的發(fā)展,促進(jìn)了電纜故障探測儀器的進(jìn)步。儀器正向智能化方向發(fā)展,能對采集的信號進(jìn)行復(fù)雜的數(shù)學(xué)處理,自動計(jì)算故障點(diǎn);記憶測量波形;打印輸出波形及測量結(jié)果;并具有體積小、攜帶方便、操作簡單等優(yōu)點(diǎn)。圖6是部分智能型電纜故障測試儀-粗測儀器閃測儀的圖片。